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Abstract

Spectral elements based on Legendre polynomials are used to improve an existing finite-element method for sim-

ulating a highly nonlinear field phenomenon: fluid cavitation in an underwater-shock environment. Further im-

provement is provided by separation of the total field into its equilibrium, incident, and scattered components. These

enhancements promise to make the finite-element method suitable for practical, three-dimensional engineering com-

putations.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we examine the effectiveness of two techniques when applied to the computational simu-

lation of fluid cavitation as it arises in the problem of a ship excited by an underwater-shock wave. The first

technique is the use of spectral elements to discretize the fluid domain [12,21,22,24]. The second technique is

separation of the total fluid field into known and unknown fields [15].

1.1. Cavitation

In the context of underwater shock, cavitation, i.e., boiling, occurs as a result of the reflection of the

shock wave from the free surface and/or wetted structure, which causes the pressure in the water to fall

below its vapor pressure [1,11]. The instantaneous bulk modulus of cavitated water is orders of magnitude

smaller than that of uncavitated water, which is the crux of the nonlinearity. A simple but satisfactory

constitutive model is a bilinear one, in which the bulk modulus is that of water as an acoustic medium when
the condensation (negative volume strain) is positive, and zero when the condensation is negative [1].
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Although pure water has been found to sustain substantial negative pressures, even small amounts of

dissolved gases nullify the effect [6].

In 1984, Felippa and DeRuntz [7] developed a cavitating acoustic finite element (CAFE) based on the

work of Newton [17–20] in which the wave field in the fluid is represented by a scalar displacement po-

tential. Spatial discretization was performed with trilinear, isoparametric, eight-node brick elements, and

the CAFE dynamical equations were integrated in time with a central-difference algorithm. Numerical

damping was employed to suppress the occurrence of spurious cavitation, which they called frothing. A six-

node wedge element was added later [8].
The CAFE solution strategy for a ship-shock simulation consists of four steps (Fig. 1): (1) construct a

finite-element (FE) model of the structure, (2) interface it with a CAFE model of the water region in which

cavitation is expected to occur, (3) enclose the CAFE mesh with a non-reflecting computational boundary,

and (4) start integrating the CAFE equations just before the incident wavefront reaches either the free

surface or the structure [7,25]. Unfortunately, because of high mesh dispersion, extremely refined CAFE

meshes are required to obtain accurate structural responses [26,28]. Hence, CAFE computation constitutes

an unacceptable overhead burden, given that the structure is the focus of interest.

Seeking to reduce CAFE overhead in two-dimensional simulations, van Aanhold et al. [31] dramat-
ically truncated the mesh in the horizontal directions with considerable success. In addition, Sprague and

Geers [28] used one-dimensional models to show that the CAFE mesh may also be truncated from

below, provided that the mesh covers all regions that exhibit fluid accretion, the presence of an uncav-

itated layer of water that separates the structure from a cavitated layer. However, even with mesh

truncation, current CAFE simulation is simply too resource intensive for three-dimensional engineering

computations.

1.2. Improvement of CAFE simulation

As mentioned above, we consider two techniques for improving CAFE simulation:

• discretization with high-order spectral elements based on Legendre polynomials,

• separation of the total field into equilibrium, incident, and scattered fields.
We evaluate these techniques with a benchmark model consisting of a semi-infinite, one-dimensional

unit-area fluid column that supports a 2-degree-of-freedom (2-DOF) mass-spring oscillator; the lower mass

represents the ship�s hull and the upper mass its internal structure and equipment. This model was pro-
ductively employed in a recent evaluation of CAFE and wet-surface-approximation methods [28]. The

benchmark solutions are the product of a super-refined CAFE model.

Fig. 1. CAFE approach for ship-shock calculations; incident wavefront shown just before the onset of cavitation.
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The effectiveness of each technique is evaluated with the comprehensive error factor [10,27], given by

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ P 2

p
, in which M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#cc=#bb

p
� 1 and P ¼ 1� #cb=

ffiffiffiffiffiffiffiffiffiffiffiffi
#cc#bb

p
, where

#cc ¼ ðt2 � t1Þ�1
Z t2

t1

c2ðtÞdt; #bb ¼ ðt2 � t1Þ�1
Z t2

t1

b2ðtÞdt; #cb ¼ ðt2 � t1Þ�1
Z t2

t1

cðtÞbðtÞdt: ð1Þ

In these equations, cðtÞ is a candidate solution in the form of a response history, bðtÞ is the corresponding
benchmark history, and t16 t6 t2 is the time span of interest. M is the magnitude error factor, which

is insensitive to phase discrepancies, and P is the phase error factor, which is insensitive to magnitude

discrepancies.

2. Cavitating acoustic spectral elements

It is well known that low-order finite elements exhibit high numerical dispersion when applied to wave-

propagation problems [14]. High-order elements generate less dispersion, but typically exhibit small

spurious oscillations; however, the reduced dispersion more than compensates for the presence of the

oscillations [16]. The most effective of the high-order finite elements appear to be spectral elements, which
display impressive wave-propagation capabilities [5,12,21,22,24]. Further, spectral elements are well suited

to parallel implementation [9].

2.1. Governing equations

We seek to construct cavitating acoustic spectral elements (CASE) based on the irrotational-motion

formulation of Newton [17–20], which employs two scalar variables: dynamic condensation sð~XX ; tÞ and
displacement potential wð~XX ; tÞ, where ~XX is the global-position vector of a fluid material point. These

variables are related as

s ¼ r2w; €ww ¼ c2s; c2s > �pE;
�pE; c2 s6 � pE;

�
ð2Þ

where pE is the equilibrium pressure, i.e., the sum of the atmospheric pressure patm and the hydrostatic
pressure phydð~XX Þ, c is the sound speed in water, and an overdot denotes a temporal derivative. The water
vapor pressure is so much smaller than the large dynamic pressures involved that it has been taken as

zero.

Total fluid pressure and displacement may be obtained as p ¼ €ww þ pE and~uu ¼ �q�1 ~rrw þ~uuE, where q is
the initial fluid density (a constant), and~uuE is the static displacement field produced by pE. The use of scalar
field quantities, as opposed to vector quantities, minimizes the number of unknowns at each point in the

fluid domain and enforces irrotationality of the flow.

2.2. Discretization

A subparametric discretization is used; first-order basis functions are used for geometry representation

and higher-order basis functions are used for field-variable representation. The fluid volume X is separated
into ne hexagonal elements defined by eight corner points. The geometry within each element is expressed as

X ¼ uTX; Y ¼ uTY; Z ¼ uTZ; ð3Þ

where X, Y, Z are column vectors of element-corner-point locations in global coordinates, u is a column

vector of trilinear shape functions, and the T-superscript denotes vector transposition.
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The dependent field variables are represented within each element as

sðn; g; f; tÞ ¼ /Tðn; g; fÞsðtÞ ¼
XN
i;j;k¼0

/iðnÞ/jðgÞ/kðfÞsijkðtÞ;

wðn; g; f; tÞ ¼ /Tðn; g; fÞwðtÞ ¼
XN
i;j;k¼0

/iðnÞ/jðgÞ/kðfÞwijkðtÞ; ð4Þ

where s and w are column vectors of ðN þ 1Þ3 time-dependent nodal values (sijk and wijk), and / is a column

vector composed of one dimension, N th-order-polynomial basis functions /iðnÞ/jðgÞ/kðfÞ; n, g, and f are
element natural coordinates ð�16 n; g; f6 1Þ.
The essence of the spectral-element method lies in the choice of /; here, we use Lagrangian interpolants

given by [23]

/iðnÞ ¼ � ð1� n2ÞP 0
N ðnÞ

NðN þ 1ÞPN ðniÞðn � niÞ
; ð5Þ

where PN is the Legendre polynomial of degree N , the prime denotes differentiation with respect to argu-
ment, and ni is the ith Gauss–Lobatto–Legendre (GLL) quadrature point defined by the corresponding

root of

ð1� n2ÞP 0
N ðnÞ ¼ 0: ð6Þ

The expression (5) satisfies the relation

/iðnjÞ ¼ dij; ð7Þ

where dij is the Kronecker delta. The one-dimensional Lagrangian interpolants (5) are shown in Fig. 2 for

N ¼ 1, 4, 8, and 16. Element–node locations are coincident with the quadrature points, which are located at
the ðN þ 1Þ zeros of (6).
The governing equations (2a) are discretized with a standard Galerkin approach [32]: premultiplication

of (2a) by /, integration over the fluid volume, and application of Green�s first identity. This yields

Z
X

/sdX þ
Z

X

~rr/ 	 ~rrwdX ¼
Z

C
/ ~rrw 	~nndC; ð8Þ

where C is the surface of the fluid volume, and~nn is the outward-normal vector to C. Substitution of (4) into
the dependent variables on the left-hand side of (8) yields the algebraic equations

QsþHw ¼ b; ð9Þ

where the capacitance matrix, reactance matrix, and boundary-interaction vector are given by

Q ¼
Z

X
//T dX; H ¼

Z
X

~rr/ 	 ~rr/T dX; b ¼
Z

C
/ ~rrw 	~nndC; ð10Þ

respectively. Note that in b, ~rrw is maintained in its continuum form because it is provided by the dis-

placements at the non-reflecting and structure–fluid boundaries.
The integrals in (10) are approximated with GLL quadrature. Because nodes and quadrature points are

coincident, and because of (7), Q is diagonal, which facilitates the use of the explicit integration scheme

used here. In (9), the matrix-vector product Hw may be evaluated at the element level without explicitly
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forming H. Indeed, for three-dimensional implementation, the most efficient evaluation of the matrix-

vector product is achieved at the element level with tensor-product factorization [13], which offers significant
savings in required operations and memory storage. However, for the simple one-dimensional elements

used here, the element matrices are assembled into a global band-diagonal matrix.

Fig. 2. One-dimensional Lagrangian interpolants based on Legendre polynomials for N ¼ 1, 4, 8, and 16.
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The bilinear constitutive equations (2b), when evaluated at each node, become

f€wwgj ¼
fc2sgj; fc2sgj > �fpEgj;
�fpEgj; fc2sgj 6 � fpEgj;

�
ð11Þ

where pE is a column vector of nodal equilibrium pressures.

As in [7], (11) are discretized in time with a conditionally stable central-difference algorithm and are

integrated with a constant time increment Dt. Numerical damping proportional to _ss is again used to
suppress frothing. As seen in Fig. 2, the CASE-node locations are clustered near the element endpoints.

Because of this, an N th-order spectral element produces a smaller Courant–Friedrichs–Lewy (CFL) sta-
bility limit [4] than an Nth-order finite element of equal size with uniform node spacing. Finally, the fluid
equations must be initialized with the incident-wave properties.

3. Field separation

The far field produced by an acoustic-shock wave in an unbounded fluid (the incident field) is relatively

easy to define. Hence, in order to minimize the propagation of a known discontinuous wave through the

CAFE mesh, integration of the CAFE dynamical equations is best begun just prior to the impingement of
the incident wavefront on either the free surface or the structure [7]. Fig. 1 shows a common geometry in

which the incident wavefront has reached the free surface but is still far from the structure, so the incident

wave must still be propagated through a substantial portion of the mesh before it reaches the structure. The

situation is easily reversed by a simple alteration of the geometry.

In order to avoid propagating the incident wave through the mesh, we employ a technique used fre-

quently in linear scattering problems, which consists of separating the total field into a known incident field

and an unknown scattered field [15]. The technique was applied to FE calculations by Chan [2,3], who used

his mesh for scattered-field calculations only. Further, it has been applied to finite-difference time-domain
linear electrodynamics calculations [30]. Field separation may also be used for nonlinear scattering prob-

lems, with or without boundaries.

3.1. Governing equations

Here, we separate the total field into three component fields: equilibrium, incident, and scattered. The

equilibrium field is easily determined as that due to atmospheric plus hydrostatic pressure, the incident field

is readily determined as that due to an acoustic-shock wave propagating in a homogeneous, unbounded

fluid, and the scattered field is caused by the presence of both the structure and the free surface. Hence, we

write s ¼ sI þ sS and w ¼ wI þ wS, where all of the variables constitute deviations from equilibrium.

Because the incident field is cavitation free, we write from (2)

sI ¼ r2wI; €wwI ¼ c2sI: ð12Þ
Notice that (12) is easily reduced to the acoustic wave equation. Introducing s ¼ sI þ sS and w ¼ wI þ wS
into (2) and employing (12), we obtain

sS ¼ r2wS; €wwS ¼
c2sS; c2sS > �ðpE þ pIÞ;
�ðpE þ pIÞ; c2sS6 � ðpE þ pIÞ;

�
ð13Þ

where pI ¼ €wwI is the incident pressure. Note that the second of (13) involves a dynamic quantity on the
right-hand sides of the inequalities, in contrast to the second of (2). In addition, the free-surface (FS)

essential boundary condition for the scattered-field equations is time dependent, i.e.,

pS
��
FS þ pI

��
FS ¼ 0: ð14Þ
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3.2. Discretization

We spatially discretize (13a) with a standard Galerkin approach as described in Section 2.2; the resulting

separated-field CASE equations are

QsS þHwS ¼ bS;

f€wwSgj ¼
fc2sSgj; fc2sSgj > �fpE þ pIgj;
�fpE þ pIgj; fc2sSgj 6 � fpE þ pIgj;

�
ð15Þ

where Q and H are defined in (10), pI is a column vector of nodal incident pressures, and the scattered

boundary-interaction vector bS is defined by

bS ¼
Z

C
/ ~rrwS 	~nndC: ð16Þ

Temporal integration is again performed following [7]. However, integration of the separated-field equa-

tions is simplified because the initial conditions for the scattered field are quiescent.

4. Evaluation

The benchmark model mentioned in Section 1.2 is shown in Fig. 3. The hull mass is m1 and the total
mass of internal structure and equipment is m2. The displacements of m1 and m2 are u1ðtÞ and u2ðtÞ,
respectively. Depth relative to m1 is denoted by X and the mesh is terminated at dPW with a plane-wave
(qc-damper) boundary, which is exact for one-dimensional acoustic waves. The fluid mesh outputs dis-

Fig. 3. Benchmark problem: (a) physical model, (b) discrete model; data transfers between components are denoted by arrows.
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placement-potential (actually pressure) data at its end nodes and accepts displacement data at those nodes

through the boundary-interaction vector.

The incident field driving the hull mass is a plane, upward propagating, step-exponential acoustic wave

defined by

pIðX ; tÞ ¼ pM exp
�
� t þ ðX � dIÞ=c

s

�
H½t þ ðX � dIÞ=c; ð17Þ

where pM and s are the peak pressure and decay time, respectively, and HðÞ is the Heaviside step-function.
At t ¼ 0, the incident wavefront is located at a standoff dI from m1.
The physical properties used in all calculations are q ¼ 1025kg=m3

, c ¼ 1500m/s, patm ¼ 0:101MPa, and
g ¼ 9:81m=s

2
. For the ship model, m2=m1 ¼ 5 and m1 ¼ 867 kg, which produce an equilibrium draft for the

corresponding three-dimensional structure of 5.08m. The spring stiffness k is such that the fixed-base
natural frequency of m2 is 5Hz. The incident wave corresponds to the shock wave generated by a 45.4 kg
charge of HBX-1 at a 10.1m standoff from the wet surface of the hull mass, so that pM ¼ 16:15 MPa and
s ¼ 0:423ms [29].
The benchmark results are the product of a one-dimensional CAFE research code, which has been

validated [28] with the benchmark problem of Bleich and Sandler [1]. The super-refined CAFE mesh has

24,000 equal-length elements and employs a mesh with dPW ¼ 3m, which extends below the 2.5m maximum
depth of cavitation. In this and all other calculations, the numerical-damping froth-suppression parameter

b is set at 0.5 [7] and the time increment is set at one half the CFL limit.

4.1. Evaluation of CASE

We first examine results generated with one-dimensional (N þ 1)-node spectral elements for the total
field, i.e., without field separation. The computations begin with the incident wavefront located at the first

node off of m1, and with the pressure at the wavefront node set at pM=2 [7]. Like the benchmark model, the
CASE models utilize equal-length elements and are terminated at dPW ¼ 3m with the plane-wave boundary.
Fig. 4(a) shows hull-mass velocity histories computed with spectral elements of four different orders,

along with the corresponding benchmark (24,001-DOF CAFE) history. All of the spectral-element models
possess 81 DOF, and the N ¼ 1 CASE model constitutes a CAFE model. The C-values appearing in the
legend are the values of comprehensive error for the various CASE-calculated histories, as referenced to the

benchmark history. We observe that comprehensive error steadily decreases with increasing element order

for the fixed number of DOF. We also observe the spurious oscillations due to frothing for N ¼ 4, 8, and 16.
Also shown in Fig. 4(a) is the benchmark history produced when cavitation is precluded (acoustic fluid).

We see that cavitation profoundly affects structural response.

Fig. 4(b) shows the space–time ‘‘cavitation zones’’ that correspond to the benchmark response of

Fig. 4(a). The gray areas indicate the existence of cavitation, where and when absolute pressure is zero. It is
seen that cavitation closures at t ¼ 49 ms, X ¼ 1:23 m, and at t ¼ 129 ms, X ¼ 0:08 m, produce the near
discontinuities in the velocity histories at times that reflect propagation of the closure disturbances at the

speed of sound.

One might very well accept the N ¼ 1 (CAFE) calculation in Fig. 4(a), characterized by C � 0:1, as
satisfactory. However, a corresponding three-dimensional calculation would involve roughly 813 > 500,000

DOF. Hence, we seek C � 0:1 accuracy with many fewer than 81 DOF in the one-dimensional calculation.
Fig. 5 shows C-values plotted versus DOF values for the spectral elements of four different orders and
several element sizes. Although the N ¼ 4 element shows little improvement over the CAFE element, the
N ¼ 8 and N ¼ 16 elements provide considerable gains. For example, about 90 CAFE DOF are required to
achieve C ¼ 0:1 accuracy, but only about 40 N ¼ 8 CASE DOF are required to do so. In a corresponding
three-dimensional calculation, this amounts to an order-of-magnitude reduction.
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In practice, it is more likely that a modeler using CASE will choose a ‘‘base’’ mesh and refine with

higher-order polynomials (p refinement). In contrast, a CAFE modeler will refine the fluid mesh by em-
ploying more, but smaller, elements (h refinement). Here, we use a base fluid model with 0.3m elements and
refine by either (i) reducing the size of the elements while keeping N ¼ 1 (CAFE refinement) or (ii) in-
creasing the polynomial order of the elements (CASE refinement). Fig. 6 shows C-values plotted versus
DOF for CAFE and CASE refinement. Although CASE refinement requires only 38% fewer DOF than
CAFE refinement to reach a comprehensive error of 0.1, it offers much better convergence at lower error

levels.

Fig. 4. (a) Hull-mass response histories calculated with four 81-DOF CASE models (dPW ¼ 3 m); C-values are the comprehensive error
factors for the CASE-calculated histories relative to the benchmark history. (b) The cavitation zones pertain to the benchmark CAFE

model.
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A disadvantage of the CASE method is the increased bandwidth of the reactance matrix H caused by

increased nodal coupling within an element. Further, for a given number of fluid DOF, CASE requires

more time steps due to the smaller CFL increment limit. To investigate these issues, we examine Figs. 7 and

8, which show C-values versus total fluid-model operation counts for the calculations behind Figs. 5 and 6,
respectively. To achieve C ¼ 0:1 accuracy with h refinement, the N ¼ 4 CASE element requires 10% more,

Fig. 6. Comprehensive error factors as a function of fluid-model DOF pertaining to _uu1 histories for either CAFE or CASE refinement
of a base fluid model with 0.3m elements (dPW ¼ 3 m, 06 t6 150 ms). The numbers in parentheses indicate the values of N for CASE
refinement.

Fig. 5. Comprehensive error factors as a function of fluid-model DOF pertaining to _uu1 histories for CASE models with several element
sizes (dPW ¼ 3 m, 06 t6 150 ms).
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the N ¼ 8 CASE element requires 25% fewer, and the N ¼ 16 CASE element requires (with C ¼ 0:093) 68%
fewer operations than does the CAFE element. In Fig. 8, CAFE and CASE require approximately the same

number of operations to achieve C ¼ 0:1. However, for greater accuracy, CASE refinement requires fewer
operations than CAFE refinement. Hence, for a given level of accuracy, the decrease in the required fluid

Fig. 7. Comprehensive error factors as a function of fluid-model operations pertaining to _uu1 histories for CASE models with several
element sizes (dPW ¼ 3 m, 06 t6 150ms).

Fig. 8. Comprehensive error factors as a function of total fluid-model operations pertaining to _uu1 histories produced with either CAFE
or CASE refinement of a base fluid model with 0.3m elements (dPW ¼ 3 m, 06 t6 150 ms). The numbers in parentheses indicate the
values of N for CASE refinement.
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DOF for CASE offsets the penalties associated with the increased operation counts due to smaller CFL

limits and larger H bandwidths.

4.2. Evaluation of field separation

For this evaluation, one-dimensional CASE calculations are initiated with the incident wavefront lo-

cated at various standoffs from the wet surface of the hull mass. To capture the peak of the step-exponential

wavefront in the separated-field solution, the wavefront location at t ¼ 0 was shifted slightly (<cDt) so that
the incident-wave peak contacted the structure exactly at the beginning of a time increment.

The CASE models all contain 161 DOF, with the plane-wave boundary placed at dPW ¼ 6 m. The
calculations fall into two groups, the first pertaining to the total-field formulation (2) and the second to the

separated-field formulation (13).
Fig. 9 shows C-values for the hull-mass velocity histories produced by the four models plotted against

standoff values. We observe that, for all elements, total-field solution error increases almost monotonically

with standoff, whereas separated-field solution error remains unchanged. We also observe that the average

rate of C-value increase decreases with increasing N . This, of course, is due to the low-dispersion attribute
of spectral elements.

Finally, Fig. 10 shows pressure-field snapshots of the incident wave generated by the four CASE models

for dI ¼ 4:5 m. The differences between the exact snapshots and the CASE-calculated snapshots expose
significant numerical dispersion in the latter. The dispersion clearly decreases with increasing element order.

5. Conclusion

We have demonstrated that the accuracy of finite-element simulations of the transient response of an

acoustic fluid subject to cavitation may be considerably improved by employing high-order spectral ele-

ments. Additional accuracy may be achieved by separating the total field into equilibrium, incident, and

Fig. 9. Comprehensive error factors pertaining to CASE-calculated _uu1 histories for various standoffs with and without field separation
(dPW ¼ 6 m, 161 DOF, 06 ðt � dI=cÞ6 150 ms).
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scattered fields, where the first and second are much easier to determine than the third. The impact of

these improvements in underwater-shock analysis is to admit the possibility of practical three-dimensional

engineering computations.
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